The dilemma of when to invest in new technology
Researchers in the life sciences community are constantly walking a fine line in assay development. On one side is the accuracy, specificity and reproducibility borne from use of a well-established tool; i.e., a tool that has been on the market for a long time. Put another way, there is a level of comfort in using the same products for many years - in science as in the rest of life.
On the other side is the importance of finding the most efficient, cost-effective methods to carry out experiments. Doing so often means taking a chance on a new product, running it alongside existing methods to compare. Of course, it’s not just cost-effectiveness that necessitates making changes; simply keeping up can mean bringing in a new product that incorporates new advances. The outcome, hopefully, is better results faster, at lower cost.
And yet, inertia is a challenging force to overcome, and there is always a tendency to maintain the status quo. Particularly, as noted above, when so much rides on maintaining consistent protocols.
Here at Horizon, our scientists have built a remarkable new tool in the HAP1 cell line to facilitate researcher's access to CRISPR technology. These knockout cell lines allow researchers to quickly validate their gene or target of interest, without having to invest time and resource in developing in-house CRISPR technology.
HAP1 and HAP1 cells gene-edited to knockout SLC30A6 (HAP1_SLC30A6, catalogue number: HZGHC002784c010) with the HPA antibody HPA057328 targeting SLC30A6 demonstarting the specificity of this antibody. The samples were prepared in parallel using the same antibody dilutions and reagents, and both images are acquired with the exact same settings. Images curtesy of Dr Emma Lundberg, Cell Profiling facility. KTH Royal Institute of Technology.
We believe that, for its designated applications, HAP1 cells are more than worth adding into a lab’s toolbox. However, our opinion only takes things so far. So we set out to ask a few scientists who have published using the HAP1 cells about their work, and how the cells played a role in their investigations.