Articles, announcements and insights from Horizon Discovery

Optimization of CRISPR Delivery in Cultured Cells & Single Cell Embryos

Jun 13, 2016 10:22:03 AM No Comments

The CRISPR/Cas9 system has been rapidly adapted to practically every model system for its ease to generate and high efficiencies to cleave target DNA. But unlike our experience with Zinc Finger Nucleases, in the human, rat and mouse cell lines we tried successful co-transfection of Cas9 mRNA and sgRNA was cell-line dependent, and often resulted in either very low or no cleavage activities.

However, sequential transfection of cells with Cas9 DNA first, and sgRNA followed 24 hrs later, reliably produced good level of activity, indicating the requirement of Cas9 presence at the time of introduction of sgRNA. Not surprisingly, creation of a cell line stably expressing Cas9 led to consistently high cleavage activities upon transfection of sgRNAs. Transfection of recombinant Cas9 protein pre-complexed with sgRNA (ribonucleoprotein particles, or RNPs) led to efficient cleavage as well.

On the other hand, when Cas9 mRNA and sgRNAs are co-microinjected into single cell embryos, it produces target cleavage as efficiently as RNPs to produce straight KOs and large deletions between two target sites, again raising a question of local concentrations of Cas9 protein and sgRNA.

Below we summarize some of the work we've done optimizing delivery of CRISPR-Cas9, which which can be read in full publication form in Human Gene Therapy here.

Read More Cell lines, Gene editing, Microinjection

Subscribe to Email Updates

RECENT POSTS

Spying on proteins - How observation can affect the perception of reality

One of the highest ideals in science is to observe natural events in their native context. Doing so...